Name ______ Date _____ Period ____

<u>DIRECTIONS</u>: For #1-5, use the accompanying diagrams to solve for x. Show work.

1.
$$x =$$

2.
$$x =$$

3.
$$x =$$

4.
$$x =$$

5.
$$x =$$

DIRECTIONS: For #6-7, use the following diagram

- **6.** Name the hypotenuse of ΔFGH .
- **7.** Name the legs of ΔFGH .

DIRECTIONS: For #8-11, use the following diagram

- **8.** Name a base angle of ΔQRT .
- **9.** Name the base of ΔQRT .
- **10.** Name the vertex angle of ΔQRT .
- **11.** Name a leg of ΔQRT .

<u>DIRECTIONS</u>: For #12-16, use the given information and diagrams to decide whether or not two triangles must be congruent. If they are, write an accurate congruence statement ($\Delta LMN \cong \Delta PQR$, for example) and name the postulate/theorem (SSS, SAS, ASA, AAS, or HL) that justifies your answer. If the triangles are not congruent, write the word "**none**" in both blanks.

12. \overline{YZ} bisects $\angle WYX$; $\overline{WY} \cong \overline{XY}$

≅ triangles are...

justified by...

13. *X* is the midpoint of \overline{BC} ; $\overline{AB} \parallel \overline{DC}$

≅ triangles are...

justified by...

14. $\overline{AB} \parallel \overline{DC}$

≅ triangles are...

justified by... _____

15. $\overline{QR}\cong \overline{QT}$; $\overline{QS}\perp \overline{RT}$

≅ triangles are... _____

justified by...

16. $\overline{JK}\cong \overline{DH}$; $\overline{JH}\cong \overline{KD}$

≅ triangles are...

justified by... _____

<u>DIRECTIONS</u>: For #17-18, write complete two-column proofs. Be neat. Show work on the diagrams.

17

Given: \overline{WY} bisects $\angle XWZ$; $\overline{XW} \cong \overline{ZW}$

Prove: \overline{YW} bisects $\angle XYZ$

18

Given: $\overline{JK}\cong \overline{LK}$;

Prove: $43 \cong 44$